

Tetrahedron: Asymmetry 15 (2004) 1677–1679

Tetrahedron: Asymmetry

Asymmetric reduction of enones with Synechococcus sp. PCC 7942

Kei Shimoda,^{a,*} Naoji Kubota,^a Hiroki Hamada,^b Misato Kaji^b and Toshifumi Hirata^c

^aDepartment of Pharmacology and Therapeutics, Faculty of Medicine, Oita University, 1-1 Hasama-machi, Oita 879-5593, Japan

^bDepartment of Applied Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan

^cDepartment of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama,

Higashi-Hiroshima 739-8526, Japan

Received 24 March 2004; accepted 19 April 2004

Abstract—*Synechococcus* sp. PCC 7942, a cyanobacterium, reduced both the endocyclic C–C double bond of s-*trans* enones and the exocyclic C–C double bond of s-*cis* enones with high enantioselectivity to afford the corresponding (*S*)-ketones under illumination. © 2004 Elsevier Ltd. All rights reserved.

Optically active α -substituted ketones are versatile chiral building blocks for asymmetric synthesis. Asymmetric reduction of enones by living whole cells is very attractive and useful for the practical preparation of α -chiral ketones because of high enantioselectivity, no cofactor requirement and ease of scaling up. Microorganisms and plants capable of reducing s-*trans* enones to (*R*)-ketones have been reported so far. However, a cell-mediated process in which s-*trans* enones are reduced to (*S*)-ketones is still unavailable. On the other hand, yeast-catalyzed reduction of s-*cis* enones afforded (*S*)-ketones. Over the course of developing a new cell-mediated reduction for asymmetric induction, we investigated the asymmetric reduction of enones by *Synechococcus* sp. PCC 7942.

First, s-trans enones **1–9** (10 mg each) with an endocyclic C–C double bond were administered to 50 mL of a suspension of *Synechococcus* sp. PCC 7942 cells (2 g)^{5,6} in 50 mM Na-phosphate buffer (pH 7.0) and incubated at 25 °C for 1 or 3 days under illumination.⁷ The yields of the products were determined by GLC analyses. Extraction from the cell broth with ether followed by purification using column chromatography on silica gel with pentane/ethyl acetate (95:5, v/v) gave the products. It was found that the C–C double bonds of **1–3** were reduced to give the corresponding (*S*)-ketones, as shown in Table 1.^{8–11} The enantiomeric purities of the resulting ketones were determined based on the peak area of the corresponding enantiomers in the GLC analyses on CP cyclodextrin β 236M-19.¹² Enone **1** was the best sub-

strate, allowing us to achieve the highest enantiomeric excess (98% ee) and yield (>99%). In the case of **2**, the reduction of the C–C double bond of **2** was accompanied by the formation of minor saturated (*S*)-alcohols **17** (>99% ee in 7% yield) and **18** (>99% ee in 2% yield). ^{13–15} No reduction occurred in the case of **4**, which had an

^{*} Corresponding author. Tel.: +81-97-586-5606; fax: +81-97-586-5619; e-mail: shimoda@med.oita-u.ac.jp

Table 1. Reduction of enones by Synechococcus sp. PCC 7942

Substrates	Products	Reaction time (day)	Conversion (%) ^a	Ee (%)	Configuration ^b
1	13	1	>99	98	S
2	14	1	86	85	S
3	15	3	17	83	S
4	_	3	0	_	
5	19	3	>99	80°	S
6	20	3	>99	81°	S
7	21	3	15	86	S
8	_	3	0	_	
9	_	3	0	_	
10	14	1	82	71	S
11	16	1	7	72	S
12	_	3	0	_	_

^a Percentage of the products in the reaction mixture on the basis of GLC analyses.

n-propyl group as the α-substituent. After three days incubation, 5–7 were reduced to the corresponding (S)-ketones 19–21. Synechococcus sp. PCC 7942 cells were not able to reduce β-substituted substrates 8 and 9. The results obtained here reveal that Synechococcus sp. PCC 7942 cells have (i) the ability of catalyzing enantioface differentiating reduction of s-trans enones to afford (S)-ketones and (ii) similar substrate specificity to microorganisms, which reduce s-trans enones if the substituent at the β-position to the carbonyl group is hydrogen and if the α-substituent is not too bulky.^{2,4}

Next, s-cis enones 10 and $11^{16,17}$ with an exocyclic C–C double bond were subjected to the same reduction system. 10 was smoothly reduced to give (S)-ketone 14 in 82% yield, and the hydrogenation at the α-position showed relatively low enantioselectivity (71% ee). Saturated alcohols 17 (>99% ee) and 18 (>99% ee) were formed as minor products in 7% yield (4:1). The reduction of 11 gave (S)-ketone 16 with 72% ee in 7% yield. On the other hand, substrate 12, which had both endocyclic and exocyclic C–C double bonds was not reduced by the cells probably due to the existence of the β-methyl group. These results demonstrate that Synechococcus sp. PCC 7942 cells have the same enantioselectivity in the reduction of s-cis enones as yeast.⁴

Thus, the asymmetric reductions of s-trans and s-cis enones have been accomplished and optically active α -substituted (S)-ketones have been prepared by using Synechococcus sp. PCC 7942 as biocatalyst. It is worth noting that this new biocatalyst has opposite enantioselectivity in the reduction of s-trans enones to other microorganisms^{2,4} and plants³ and that each enantiomer of the α-substituted ketones can be synthesized by selective use of the whole cells. Recently, two enone reductases have been isolated from Nicotiana tabacum; s-trans enone reductase, which was responsible for the reduction of the endocyclic C-C double bond and s-cis enone reductase, which was capable of reducing the exocyclic C-C double bond. ¹⁸ In Synechococcus sp. PCC 7942 s-trans enone reductases with an opposite enantioselectivity to those from yeast and N. tabacum might exist. Further investigations using the enzyme preparation from *Synechococcus* sp. PCC 7942 are currently in progress.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (No. 16790014) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References and notes

- Tomioka, K.; Koga, K. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1983; Vol. 2, p 201.
- (a) Kergomard, A.; Renard, M. F.; Veschambre, H. Tetrahedron Lett. 1978, 5197; (b) Kergomard, A.; Renard, M. F.; Veschambre, H. J. Org. Chem. 1982, 47, 792; (c) Desrut, M.; Kergomard, A.; Renard, M. F.; Veschambre, H. Biochem. Biophys. Res. Commun. 1983, 110, 908; (d) Kergomard, A.; Renard, M. F.; Veschambre, H.; Courtois, D.; Petiard, V. Phytochemistry 1988, 27, 407; (e) Noma, Y.; Asakawa, Y. Phytochemistry 1992, 31, 2009; (f) Takabe, K.; Hiyoshi, H.; Sawada, H.; Tanaka, M.; Miyazaki, A.; Yamada, T.; Kitagiri, T.; Yoda, H. Tetrahedron: Asymmetry 1992, 3, 1399.
- 3. (a) Hirata, T.; Hamada, H.; Aoki, T.; Suga, T. *Phytochemistry* 1982, 21, 2209; (b) Shimoda, K.; Hirata, T. *J. Mol. Catal. B: Enzym.* 2000, 8, 255; (c) Hirata, T.; Takarada, A.; Matsushima, A.; Kondo, Y.; Hamada, H. *Tetrahedron: Asymmetry* 2004, 15, 15.
- 4. Matsumoto, K.; Kawabata, Y.; Takahashi, J.; Fujita, Y.; Hatanaka, M. *Chem. Lett.* **1998**, 283.
- 5. The suspension cells of *Synechococcus* sp. PCC 7942 were cultured in a 500 mL conical flask containing 300 mL of BG-11 medium for 3 weeks under illumination (4000 lux). The grown cells were collected by centrifugation at 5000 rpm for 10 min to give 2 g of wet cells.
- Nakamura, K.; Yamanaka, R.; Tohi, K.; Hamada, H. Tetrahedron Lett. 2000, 6799.
- 7. The conversion yields and enantiomeric purities of the resulting ketones were drastically reduced when the reactions occurred in the dark. For example, 1 was

^b Preferred configuration at the α-position to the carbonyl group of the products.

^c Diastereomeric excess.

- reduced to 13 with 70% ee in 42% yield after one day's incubation in the dark.
- 8. Product 13: $[\alpha]_D^{25} = +114.9$ (c 0.52, CHCl₃) {lit.⁹ $[\alpha]_D^{25} = -110.5$ for (*R*)-enantiomer}; 14 converted from 2: CD $[\theta]_{288} = +887$ (c 0.75, MeOH) {lit.¹⁰ $[\theta]_{288} = -987$ for (R)-enantiomer}; **14** from **10**: CD $[\theta]_{288} = +701$ (c 0.68, MeOH); **15**: CD $[\theta]_{288} = +1914$ (c 0.32, MeOH) {lit. 11 $[\theta]_{288} = +2200$ }; **16**: CD $[\theta]_{288} = +1860$ (c 0.15, MeOH) {lit. 11 $[\theta]_{288} = +2480$ }; **21**: CD $[\theta]_{288} = +995$ (c 0.14, MeOH) MeOH).
- Partridge, J. J.; Chada, N. K.; Vskokovic, M. R. J. Am. Chem. Soc. 1973, 95, 532.
- Cheer, C. J.; Djerassi, C. Tetrahedron Lett. 1976,
- 11. Meyers, A. I.; Williams, D. R.; Erickson, G. W.; White, S.; Druelinger, M. J. Am. Chem. Soc. 1981, 193, 3081.
- 12. Conditions for capillary GLC analysis: column, CP cyclodextrin β 236M-19 (0.25 mm×25 m); injection, 180 °C; detector, 180 °C; oven, 100 °C; carrier gas, N₂ (50 mL min⁻¹). Retention times for the products in the GLC were as follows: (S)- and (R)-13, 10.5 and 11.4 min; (S)- and (R)-14, 11.8 and 12.8 min; (S)- and (R)-15, 12.7

- and 12.9 min; (S)- and (R)-16, 27.7 and 27.9 min; (S)- and
- (R)-21, 50.1 and 51.9 min. 13. Product 17: $[\alpha]_D^{25} = +51.2$ (c 0.4, MeOH) {lit. \(^{14}\) $[\alpha]_D^{20} = +42.9$ }; 18: $[\alpha]_D^{25} = +25.7$ (c 0.2, MeOH) {lit. \(^{14}\) $[\alpha]_D^{20} = +24.3$ }. The enattoneric purities of 17 and 18 were determined by ¹H NMR analyses of the corresponding MTPA esters as described previously. 15 In the cases of the other substrates, saturated alcohols were not obtained during the incubation time examined.
- 14. Backstrom, R.; Sjoberg, B. Ark. Kemi. 1967, 26, 549.
- Hirata, T.; Izumi, S.; Akita, K.; Yoshida, H.; Gotoh, S. Tetrahedron: Asymmetry 1993, 4, 1465.
- 16. The configuration of 11 at the propylidene site was assigned to be E based on the ¹H NMR data. The chemical shift of the olefin proton signal comparatively shifted downfield to δ 6.61 (1H, tt, J = 7.4 and 2.1 Hz) due to the placement of this proton in the deshielding region of the neighbouring carbonyl group.¹⁷.
- 17. Crandall, J. K.; Arrington, J. P.; Hen, J. J. Am. Chem. Soc. 1967, 89, 6208.
- 18. Tang, Y. X.; Suga, T. Phytochemistry 1992, 31, 2599.